skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Izmirlioglu, Yusuf"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper provides a survey of the literature on the application of Multi-agent Systems (MAS) technology for Smartgrids. Smartgrids represent the next generation electric network, as communities are developing self-sufficient and environmentally friendly energy production. As a cyber-physical system, the development of the vision of Smartgrids requires the resolution of major technical problems; this has fed over a decade of research. Due to the stochastic, intermittent nature of renewable energy resources and the heterogeneity of the agents involved in a Smartgrid, demand and supply management, energy trade and control of grid elements constitute great challenges for stable operation. In addition, in order to offer resilience against faults and attacks, Smartgrids should also have restoration, self-recovery and security capabilities. Multi-agent systems (MAS) technology has been a popular approach to deal with these challenges in Smartgrids, due to their ability to support reasoning in a distributed context. This survey reviews the literature concerning the use of MAS models in each of the relevant research areas related to Smartgrids. The survey explores how researchers have utilized agent-based tools and methods to solve the main problems of Smartgrids. The survey also discusses the challenges in the advancement of Smartgrid technology and identifies the open problems for research from the view of multi-agent systems. 
    more » « less
  2. The action language m∗ employs the notion of update models in defining transitions between states. Given an action occurrence and a state, the update model of the action occurrence is automatically constructed from the given state and the observability of agents. A main criticism of this approach is that it cannot deal with situations when agents’ have incorrect beliefs about the observability of other agents. The present paper addresses this shortcoming by defining a new semantics for m∗ . The new semantics addresses the aforementioned problem of m∗ while maintaining the simplicity of its semantics; the new definitions continue to employ simple update models, with at most three events for all types of actions, which can be constructed given the action specification and independently from the state in which the action occurs. 
    more » « less
  3. In this paper we develop a state transition function for partially observable multi-agent epistemic domains and implement it using Answer Set Programming (ASP). The transition function computes the next state upon an occurrence of a single action. Thus it can be used as a module in epistemic planners. Our transition function incorporates ontic, sensing and announcement actions and allows for arbitrary nested belief formulae and general common knowledge. A novel feature of our model is that upon an action occurrence, an observing agent corrects his (possibly wrong) initial beliefs about action precondition and his observability. By examples, we show that this step is necessary for robust state transition. We establish some properties of our state transition function regarding its soundness in updating beliefs of agents consistent with their observability. 
    more » « less